EMC TEST REPORT

EN 55032:2015/A1:2020 EN 55035:2017/A11:2020 MEASUREMENT AND TEST REPORT

For

INVT Network Power (Shenzhen) Co.,Ltd.

Room 601, Building 1, INVT Guangming Technology Building, Shutianpu Community, Matian Street, Guangming District, Shenzhen City, Guangdong Province, China

Model: IS100, IS160

2022-12-01

This Report Concerns: **Equipment Type:** Original Report iSmart Series Modular Data Center Sinphy Xie/ Test Engineer: **Report Number:** TH2211384-C02-R01 Test Date: 2022-11-28 to 2022-12-01 Reviewed By: Neo Dong/ Approved By: Binglee/ Prepared By: Shenzhen Tian Hai Test Technology Co., Ltd. 125-126, No.66, Zhangge Road, Zhangge Community, Fucheng Street, Longhua District, Shenzhen, Guangdong, China Tel: +86-755-86615100 Fax: +86-755-86615105

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior written consent of TianHai Compliance Testing Laboratory Ltd.

TABLE OF CONTENTS

1 - SUMMARY OF STANDARDS AND RESULTS	3
1.1 DESCRIPTION OF STANDARDS AND RESULTS	
1.2 DESCRIPTION OF PERFORMANCE CRITERIA	
2 - GENERAL INFORMATION	5
2.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST	
2.2 STATEMENT OF THE MEASUREMENT UNCERTAINTY TEST FACILITY	
2.3 MEASUREMENT UNCERTAINTY	
2.5 PRINCIPLE OF CONFIGURATION SELECTION	
2.6 TEST OPERATION	6
2.7 SPECIAL ACCESSORIES AND AUXILIARY EQUIPMENT	
3 - TEST EQUIPMENT LIST AND DETAILS	
4 - CONDUCTED EMISSION MEASUREMENT	10
4.1 BLOCK DIAGRAM OF TEST SETUP	
4.2 LIMITS	
4.3 TEST PROCEDURE	
4.4 TEST RESULTS AND DATA	
5 - RADIATED DISTURBANCE MEASUREMENT	
5.1 BLOCK DIAGRAM OF TEST SETUP	
5.2 LIMITS	
5.3 TEST PROCEDURE	
6 - IMMUNITY TEST	
6.1 ELECTROSTATIC DISCHARGE IMMUNITY TEST	
6.3 ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST	
6.4 SURGE IMMUNITY TEST	
6.5 INJECTED CURRENTS SUSCEPTIBILITY TEST	
6.6 POWER FREQUENCY MAGNETIC FIELD TEST	
6.7 VOLTAGE DIPS AND INTERRUPTIONS TEST	
ADDENDIV A FUT DUCTOOD ADUC	

Report No.: TH2211384-C02-R01 Page 2 of 32

EN 55032 Report

1 - SUMMARY OF STANDARDS AND RESULTS

1.1 DESCRIPTION OF STANDARDS AND RESULTS

The EUT have been tested according to the applicable standards as referenced below.

Description of Test Item	Test Standard	Basic Standard	Requirement	Results
Conducted disturbance at mains terminals	EN 55032:2015 /A1:2020	EN 55032:2015 /A1:2020	Class A	PASS
Asymmetric mode conducted emission	EN 55032:2015 /A1:2020	EN 55032:2015 /A1:2020	1 8	N/A
Radiated disturbance	EN 55032:2015 /A1:2020	EN 55032:2015 /A1:2020	Class A	PASS
	li li	MMUNITY		
Description of Test Item	Test Standard	Basic Standard	Test configuration	Results
Electrostatic discharge (ESD)	EN 55035:2017 /A11:2020	IEC 61000-4-2:2008	Air Discharge: ±2KV, ±4KV, ±8KV Contact Discharge: ±2kV,±4kV	PASS
Radio-frequency, Continuous radiated disturbance	EN 55035:2017 /A11:2020	IEC 61000-4-3:2020	1%1kHz, 80% AM, 80 ~ 1000MHz, 1800MHz,2600MHz 3500MHz,6000MHz 3V/m	PASS
Electrical fast transient (EFT)	EN 55035:2017 /A11:2020	IEC 61000-4-4:2012	Tr/Td 5/50 ns, 5kHz, AC power port: ±1kV	PASS
Surge (Input a.c. power ports)	EN 55035:2017 /A11:2020	IEC 61000-4-5:2014 +AMD1:2017	AC port: 1.2/50 (8/20)Tr/Th us Line-Line:±1kV Line-PE:±2kV	PASS
Radio-frequency, Continuous conducted disturbance	EN 55035:2017 /A11:2020	IEC 61000-4-6:2013	1%1kHz, 80%, AM Mod. 0.15 ~ 10MHz: 3V/m 10 ~ 30MHz: 3V/m to1V/m 30 ~ 80MHz: 1V/m	PASS
Power frequency Magnetic field	EN 55035:2017 /A11:2020	IEC 61000-4-8:2009	1A/m, 50Hz or 60Hz	PASS
Voltage dips, <5% reduction		4 1	0.5 Cycle	PASS
Voltage dips, 70% reduction	EN 55035:2017 /A11:2020	IEC 61000-4-11: 2020	25 Cycle	PASS
Voltage interruptions	Region 120	The St.	250 Cycle	PASS
Remark:	. A.	•	4	- 70

Page 3 of 32

Report No.: TH2211384-C02-R01

EN 55032 Report

1.2 DESCRIPTION OF PERFORMANCE CRITERIA

General Performance Criteria

General performance criteria are defined in 8.2, 8.3 and 8.4. These criteria shall be used during the testing of primary functions where no relevant annex is applicable. When assessing the impact of a disturbance on a function, the assessment should take into consideration the function's performance prior to the application of the disturbance and only identify as failures those changes in performance that are a result of the disturbance.

1.2.1 Performance criterion A

The equipment shall continue to operate as intended without operator intervention. No degradation of performance, loss of function or change of operating state is allowed below a performance level specified by the manufacturer when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

1.2.2 Performance criterion B

During the application of the disturbance, degradation of performance is allowed. However, no unintended change of actual operating state or stored data is allowed to persist after the test. After the test, the equipment shall continue to operate as intended without operator intervention; no degradation of performance or loss of function is allowed, below a performance level specified by the manufacturer, when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level (or the permissible performance loss), or recovery time, is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

1.2.3 Performance criterion C

Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. A reboot or re-start operation is allowed.

Information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

Report No.: TH2211384-C02-R01 Page 4 of 32 EN 55032 Report

2 - GENERAL INFORMATION

2.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST

Client Information

INVT Network Power (Shenzhen) Co.,Ltd. Applicant:

Room 601, Building 1, INVT Guangming Technology Building, Shutianpu Community, Matian Street, Guangming District, Shenzhen City, Guangdong

Address:

Province, China

Manufacturer: INVT Network Power (Shenzhen) Co.,Ltd.

Room 601, Building 1, INVT Guangming Technology Building, Shutianpu

Community, Matian Street, Guangming District, Shenzhen City, Guangdong Address:

Province, China

General Description of E.U.T

EUT Name: iSmart Series Modular Data Center

INVT Trade Mark:

Model No.: IS100, IS160

Model

Difference:

They are identical to each other except for product name and model number

Sample No.: TH2211384

AC 220V, 50/60Hz, 13.6A-27.27A, 3kW-6kW Ratings:

A. ON Test Mode:

1. Work normally

Note:

2.2 STATEMENT OF THE MEASUREMENT UNCERTAINTY TEST FACILIT

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration Limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16-4-2 "Specification for radio disturbance and immunity measuring apparatus and methods - Part 4-2: Uncertainties, statistics and limit modelling - Measurement instrumentation uncertainty" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

2.3 MEASUREMENT UNCERTAINTY

Test	Parameters	Expanded uncertainty (U _{lab})	Expanded uncertainty (Ucispr)
Conducted Emission	Level accuracy (9kHz to 150kHz) (150kHz to 30MHz)	± 2.52 dB ± 2.36 dB	$\pm 3.80~\mathrm{dB}$ $\pm 3.40~\mathrm{dB}$
Power disturbance	Level accuracy (30MHz to 300MHz)	± 3.20 dB	±4.50 dB

Report No.: TH2211384-C02-R01 EN 55032 Report

Electromagnetic Radiated Emission (3-loop)	Level accuracy (9kHz to 30MHz)	±3.10dB	N/A
Radiated emission	Level accuracy (30MHz to 1000MHz)	±5.78dB	± 6.30 dB
Radiated emission	Level accuracy (above 1000MHz)	±4.62dB	N/A
Mains Harmonic	Voltage	±1.80%	N/A
Voltage Fluctuations & Flicker	Voltage	±0.64%	N/A

⁽¹⁾ Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus.

2.4 TEST LOCATION

All tests were performed at Shenzhen Tianhai Test Technology Co., Ltd. 125-126, No.66, Zhangge Road ,Zhangge Community, Fucheng Street, Longhua District, Shenzhen, Guangdong Province, P.R. China

2.5 PRINCIPLE OF CONFIGURATION SELECTION

Emission: The equipment under test (EUT) was configured to measure its highest possible radiation level. The test modes were adapted accordingly in reference to the instructions for use Immunity: The equipment under test (EUT) was configured to have its highest possible susceptibility against the tested phenomena. The test modes were adapted accordingly in reference to the instructions for use.

2.6 TEST OPERATION

Test operation refers to test setup in chapter 4 & 5 & 6 & 7 & 8. Pre-test in all operation modes, and find out the worst case for compliance test. According to section 2.1, full tests were applied on model:IS100

2.7 SPECIAL ACCESSORIES AND AUXILIARY EQUIPMENT

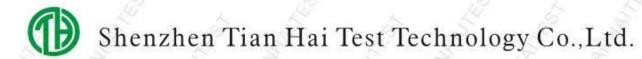
The EUT was tested together with the following accessories:

Kind of Equipment	Manufacturer Type S/N		S/N
1	1	1 2	1

The EUT was tested with following cables:

Cable name	Length (m) Shield		Core No.	Detachable	
1 38 38	134 14	1 2 2	T W	1 1	

Report No.: TH2211384-C02-R01 Page 6 of 32 EN 55032 Report

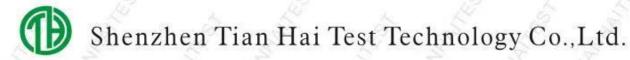

⁽²⁾ The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor of k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

⁽³⁾ The measurement uncertainty is not included in the test result.

3 - TEST EQUIPMENT LIST AND DETAILS

Kind of Equipment	Manufacturer	Туре	S/N	Calibrate until
Conducted Emission	£ 29	5	20 8	15
EMI Test Receiver	R&S	ESR7	102333	2023-11-13
L.I.S.N	Schwarzbeck	NNLK 8128	5089	2023-11-13
8-Wire ISN CAT6	Schwarzbeck	NTFM 8158	231	2023-11-13
Pulse Limiter	Schwarzbeck	VTSD 9561-F	847	2023-11-13
Test software	FALA	12 2	EMC-CON 3A1.1	1 6
Radiated Emission (3m	1)		Zin Zin	5
EMI Test Receiver	R&S	ESR7	102333	2023-11-13
MXA Signal Analyzer	Keysight	N9020A	MY51281805	2023-04-15
Bilog Antenna	Schwarzbeck	VULB 9168	01148	2023-11-20
Pre-Amplifier	Schwarzbeck	BBV 9718 B	00109	2023-11-13
Pre-Amplifier	Schwarzbeck	BBV 9743 B	00253	2023-11-13
Horn Antenna	Schwarzbeck	BBHA 9120	02379	2023-11-20
Test software	FALA	1	FA-03A2 RE	1
Harmonics & Flicker		6 4	W. Carlot	J. S.
5kVA AC Power Source	AMETEK CTS	5001iX-CTS-400	2046A03237	2023-11-13
Signal Conditioning Unit	AMETEK CTS	PACS-1	2046A03238	2023-11-13
Test software	AMETEK CTS	CTS 4	Version 4.26.0	1
Electrostatic discharge	e (ESD)	0		15
ESD Simulator	TESEQ	NSG 437	1569	2023-11-15
Pistol	TESEQ	V06.04	1 3 3	7
Base Station	TESEQ	V06.02	1 8	1 25
Radio-frequency,Conti	nuous radiated o	listurbance (RS)	K.	100
Signal generator	R&S	SMB 100A	113650	2023-04-15
Power meter	Agilent	E4417A	MY45100899	2023-04-15
Power sensor	Agilent	E9321A	US40390494	2023-04-15
Power sensor	Agilent	E9322A	MY44420219	2023-04-15
	180	MPA-80-1000-	MPA2112426	2023-04-15

Report No.: TH2211384-C02-R01 Page 7 of 32 EN 55032 Report

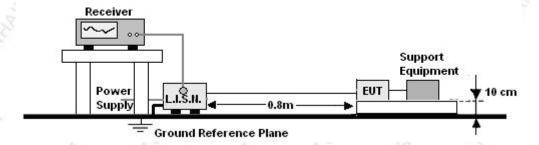


Power amplifier	Micotop	MPA-1000-6000- 100	MPA2201013	2023-04-15
Stacked Log. Periodic Antenna	Schwarzbeck	STLP 9129	201	1 29
RF Switch	Emtrace	SW X4	SW X4 /	
Test Software	Emtrace	EM 3	V1.2.1	1
Electrical fast transien	t (EFT)	F. K.	N. S.	N. A.
Burst Tester	3C test	EFT 500T	ES027000120015	2023-11-13
Coupling Clamp	3C test	CCC 100	CCC 20092269	2023-11-13
Test Software	3C test	V4.2.7	ES027000120015	1 2
Surge	2 3 S	. J. Z.	THE THE	73/1/
Surge simulator	3C test	CWS 600CT	ES058000920005	2023-11-13
Three phases CDN	3C test	SPN 3832T	ES0911910	2023-11-13
CDN for unshielded symmetrical high-speed Telecom cable	3C test	CDN405T8A	ES064001220010	2023-11-13
CDN for Telecom cable	3C test	CDN405M40-5	ES1071910	2023-11-13
Test Software	3C test	V1.0.5.2 ES058000920005		1
Radio-frequency,Conti	nuous conducted	d disturbance (CS)	i i	S
Conducted Immunity Test System	3C test	CST 1075	ES096000120008	2023-11-13
6dB Attenuator	3C test	DTC75-6	ES095000120006	2023-11-13
Single phase CDN	3C test	CDN M2M3	ES064002620007	2023-11-13
Three phases CDN	3C test	CDN M5-16	ES064003320004	2023-11-13
Calibration Set	3C test	CDN 100KIT	ES064002820016	2023-11-13
Calibration Set	3C test	EM CL100KIT	EM C20032816	2023-11-13
EM-Clamp	3C test	EM CL100	EM C20032811	2023-11-13
Test software	SKET	1	V1.4.0.54	1 2
Power Frequency Mag	netic Field (PFMF	(i)	4	
PFMF simulator	3C test	MFS 400	ES045000720001	2023-11-13
Transformer	3C test	MFT 400	ES046000220003	2023-11-13
Magnetic field antenna	3C test	TCXS111	TCXS20060910	2023-11-13
Test software	3C test	V4.2.7	ES045000720001	1

Report No.: TH2211384-C02-R01

Page 8 of 32

EN 55032 Report


Power failure simulator	3C test	PFS 2216SD	ES049001220003	2023-11-13
Test software	3C test	V4.2.8	ES049001220003	1 6

Report No.: TH2211384-C02-R01 Page 9 of 32 EN 55032 Report

4 - CONDUCTED EMISSION MEASUREMENT

4.1 BLOCK DIAGRAM OF TEST SETUP

4.2 LIMITS

Frequency range	Class A Lim	nits (dBµV)
(MHz)	Quasi-peak	Average
0.15 ~ 0.5	79	66
0.50 ~ 30	73	60

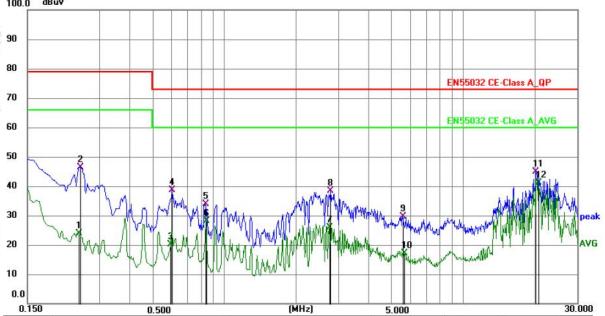
4.3 TEST PROCEDURE

The EUT is put on the plane 0.8m high above the ground by insulating support and connected to the AC mains through a Line Impedance Stability Network (L.I.S.N). This provided a 50ohm coupling impedance for the tested equipments. Both sides of AC line are investigated to find out the maximum conducted emission according to the EN 55032 regulations during conducted emission measurement.

The bandwidth of the field strength meter is set at 9kHz.

The frequency range from 150kHz to 30MHz is investigated. The scanning waveform please refer to the next page.

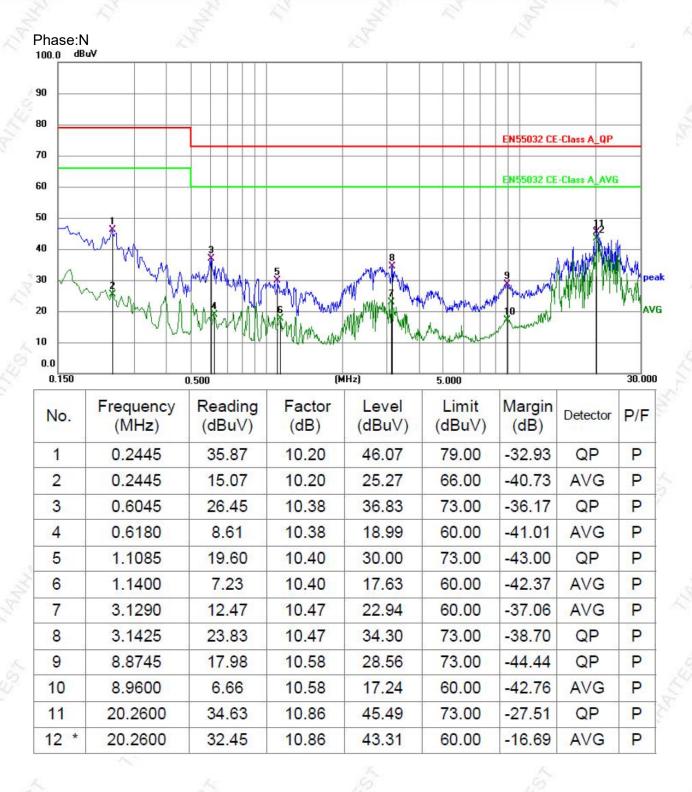
Report No.: TH2211384-C02-R01 Page 10 of 32 EN 55032 Report


4.4 TEST RESULTS AND DATA

EUT: iSmart Series Modular Data Center

M/N: IS100
Test Mode: Mode A.1
Test Voltage: AC 220V/50Hz

Temperature: 23℃
Humidity: 55%
Atmosphere pressure: 101Kpa
Test Results: Pass


Phase:L1

0.150		0.500	M)	(Hz)	5.000			30.000
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F
1	0.2445	13.73	10.26	23.99	66.00	-42.01	AVG	Р
2	0.2490	36.09	10.27	46.36	79.00	-32.64	QP	Р
3	0.5955	9.86	10.36	20.22	60.00	-39.78	AVG	Р
4	0.6045	28.25	10.36	38.61	73.00	-34.39	QP	Р
5	0.8340	23.55	10.36	33.91	73.00	-39.09	QP	Р
6	0.8430	17.81	10.37	28.18	60.00	-31.82	AVG	Р
7	2.7510	15.54	10.43	25.97	60.00	-34.03	AVG	Р
8	2.7915	27.94	10.43	38.37	73.00	-34.63	QP	Р
9	5.5850	19.21	10.44	29.65	73.00	-43.35	QP	Р
10	5.6750	6.64	10.45	17.09	60.00	-42.91	AVG	Р
11	20.2600	34.07	10.91	44.98	73.00	-28.02	QP	Р
12 *	20.8090	30.25	10.92	41.17	60.00	-18.83	AVG	Р

Report No.: TH2211384-C02-R01 Page 11 of 32 EN 55032 Report

Report No.: TH2211384-C02-R01 Page 12 of 32 EN 55032 Report

5 - RADIATED DISTURBANCE MEASUREMENT

5.1 BLOCK DIAGRAM OF TEST SETUP

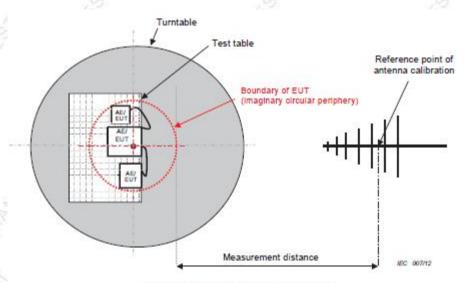


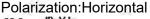
Figure C.1 - Measurement distance

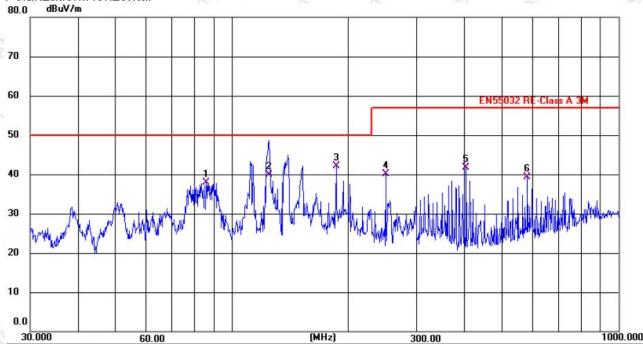
5.2 LIMITS

Frequency (MHz)	Class A Quasi-peak Limits at 3m dB(μV/m)
30-230	50
230-1000	57

5.3 TEST PROCEDURE

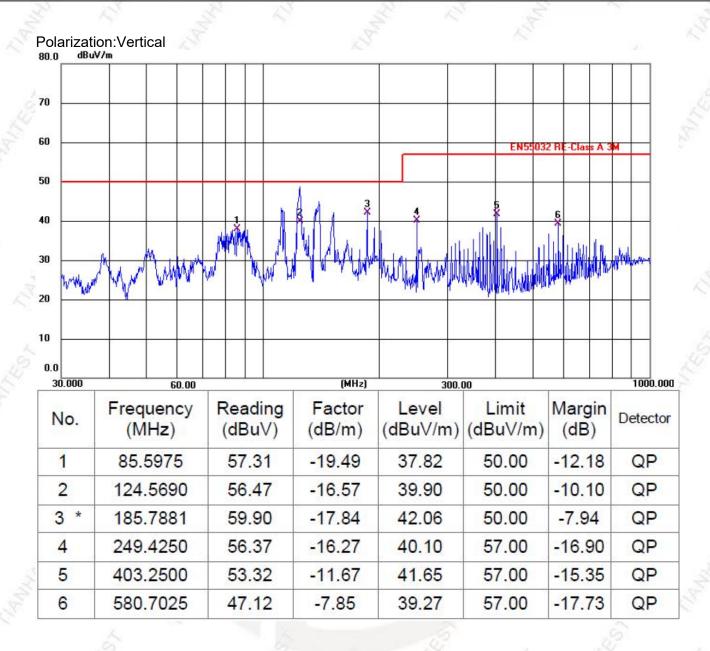
- a. The Product was placed on the non-conductive turntable 0.8/0.1 m above the ground at a chamber.
- b. Set the spectrum analyzer/receiver in Peak detector, Max Hold mode, and 120 kHz RBW. Record the maximum field strength of all the pre-scan process in the full band when the antenna is varied between 1~4 m in both horizontal and vertical, and the turntable is rotated from 0 to 360 degrees.
- c. For each frequency whose maximum record was higher or close to limit, measure its QP value: vary the antenna's height and rotate the turntable from 0 to 360 degrees to find the height and degree where Product radiated the maximum emission, then set the test frequency analyzer/receiver to QP Detector and specified bandwidth with Maximum Hold Mode, and record the maximum value


Report No.: TH2211384-C02-R01 Page 13 of 32 EN 55032 Report


5.4 TEST RESULTS AND DATA

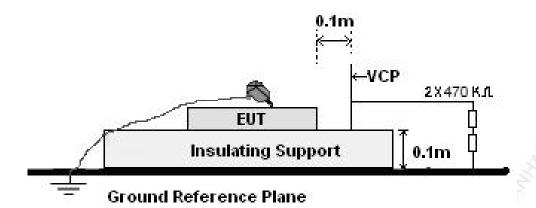
EUT: iSmart Series Modular Data Center

M/N: IS100
Test Mode: Mode A.1
Test Voltage: AC 220V/50Hz


Temperature: 26 ℃
Humidity: 54%
Atmosphere pressure: 101Kpa
Test Results: Pass

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	85.5975	57.31	-19.49	37.82	50.00	-12.18	QP
2	124.5690	56.47	-16.57	39.90	50.00	-10.10	QP
3 *	185.7881	59.90	-17.84	42.06	50.00	-7.94	QP
4	249.4250	56.37	-16.27	40.10	57.00	-16.90	QP
5	403.2500	53.32	-11.67	41.65	57.00	-15.35	QP
6	580.7025	47.12	-7.85	39.27	57.00	-17.73	QP

Report No.: TH2211384-C02-R01 Page 14 of 32 EN 55032 Report



Report No.: TH2211384-C02-R01 Page 15 of 32 EN 55032 Report

6 - IMMUNITY TEST

6.1 ELECTROSTATIC DISCHARGE IMMUNITY TEST

6.1.1 BLOCK DIAGRAM OF TEST SETUP

6.1.2 TEST SPECIFICATION

Basic Standard : IEC 61000-4-2:2008
Test Port : Enclosure port

Discharge Impedance : 330 ohm / 150 pF Discharge Mode : Single Discharge

Discharge Period : one second between each discharge

6.1.3 TEST PROCEDURE

6.1.3.1. Air Discharge

This test is done on a non-conductive surface. The round discharge tip of the discharge electrode shall be approached as fast as possible to touch the EUT. After each discharge, the discharge electrode shall be removed from the EUT. The generator is then re-triggered for a new single discharge and repeated 10 times for each pre-selected test point. This procedure shall be repeated until all the air discharge completed.

6.1.3.2. Contact Discharge

All the procedure shall be same as Section 6.1.3.1. except that the tip of the discharge electrode shall touch the EUT before the discharge switch is operated.

6.1.3.3. Indirect Discharge for Horizontal Coupling Plane

At least 10 single discharges (in the most sensitive polarity) shall be applied at the front edge of each HCP opposite the center point of each unit (if applicable) of the EUT and 0.1m from the front of the EUT. The long axis of the discharge electrode shall be in the plane of the HCP and perpendicular to its front edge during the discharge.

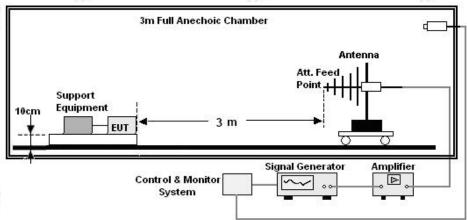
6.1.3.4. Indirect Discharge for Vertical Coupling Plane

At least 10 single discharges (in the most sensitive polarity) shall be applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X 0.5m, is placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges shall be applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are completely illuminated.

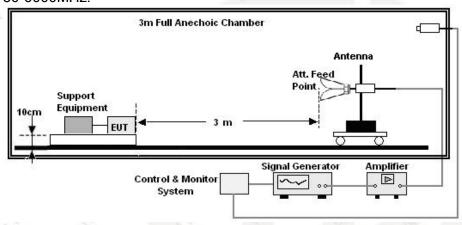
Report No.: TH2211384-C02-R01 Page 16 of 32 EN 55032 Report

6.1.4 TEST RESULTS

Electrostatic Discharge					
Basic Standard:	IEC 61000-4-2:2008				
EUT:	iSmart Series Modular Data Center				
M/N:	IS100	=			
Test Mode:	Mode A.1	3			
Test Voltage:	AC 220V/50Hz	D			
Temperature:	24℃				
Humidity:	60%				
Atmosphere pressure:	101Kpa	5			


Discharge Method	Discharge Position	Voltage (±kV)	Min. No. of Discharge per polarity (Each Point)	Performance criteria	Result
	Metal Surfaces	2, 4	10	В	Pass
Contact Discharge	Indirect Discharge HCP	2, 4	10	В	Pass
72	Indirect Discharge VCP	2, 4	10	В	Pass
Air Discharge	Insulating Surfaces, Display	2, 4, 8	10	В	Pass

Report No.: TH2211384-C02-R01 Page 17 of 32 EN 55032 Report


6.2 RADIO FREQUENCY ELECTROMAGNETIC FIELDS

6.2.1 BLOCK DIAGRAM OF TEST SETUP

80-1000MHz:

80-6000MHz:

6.2.2 TEST SPECIFICATION

Basic Standard : IEC 61000-4-3:2020

Test Port : Enclosure port

Step Size : 1%

Modulation : 1kHz, 80% AM

Dwell Time : 1 second

Polarization : Horizontal & Vertical

6.2.3 TEST PROCEDURE

- a. The testing was performed in a fully-anechoic chamber. The transmit antenna was located at a distance of 3 meters from the Product.
- b. The frequency range is swept from 80MHz to 1000MHz, 1800MHz, 2600MHz, 3500MHz, 6000MHz, with the signal 80% amplitude modulated with a 1 kHz sine wave. The rate of sweep did not exceed 1.5x 10⁻³ decade/s. Where the frequency range is swept incrementally, the step size was 1%.
- c. The test was performed with the Product exposed to both vertically and horizontally polarized fields on each of the four sides.

Report No.: TH2211384-C02-R01 Page 18 of 32 EN 55032 Report

6.2.4 TEST RESULTS

Radio frequency electromagnetic fields				
Basic Standard:	IEC 61000-4-3:2020			
EUT:	iSmart Series Modular Data Center			
M/N:	IS100			
Test Mode:	Mode A.1			
Test Voltage:	AC 220V/50Hz			
Temperature:	24 ℃			
Humidity:	60%			
Atmosphere pressure:	101Kpa			

Frequency (MHz)	Position	Field Strength (V/m)	Performance criteria	Result
€.	Front	3	A	Pass
90 1000	Right	3	A	Pass
80 - 1000	Back	3	Α &	Pass
	Left	3	A	Pass
247	Front	3	Α	Pass
1800	Right	3	A	Pass
1600	Back	3	A	Pass
	Left	3	A	Pass
	Front	3	Α,9	Pass
2600	Right	3	Α	Pass
2000	Back	3	A	Pass
	Left	3	A	Pass
77	Front	3	A	Pass
2500	Right	3	A	Pass
3500	Back	3	A	Pass
	Left	3	Α Δ	Pass
2	Front	3	A A	Pass
6000	Right	3	A	Pass
6000	Back	3	A	Pass
	Left	3	Α	Pass

Report No.: TH2211384-C02-R01 Page 19 of 32 EN 55032 Report

6.3 ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST

6.3.1 BLOCK DIAGRAM OF TEST SETUP

To CDN 0.5m EUT Support Equipment Ground Reference Plane

6.3.2 TEST SPECIFICATION

Basic Standard : IEC 61000-4-4:2012 Test Port : input a.c.power port

Impulse Frequency: 5 kHzImpulse Wave-shape: 5/50 nsBurst Duration: 15 msBurst Period: 300 ms

Test Duration : 2 minutes per polarity

6.3.3 TEST PROCEDURE

The EUT is put on the table which is 0.8 meter high above the ground. This reference ground plane shall project beyond the EUT by at least 0.1m on all sides and the minimum distance between EUT and all other conductive structure, except the ground plane beneath the EUT, shall be more than 0.5m.

6.3.3.1. For input and output AC power ports:

The EUT is connected to the power mains by using a coupling device which couples the EFT interference signal to AC power lines. Both polarities of the test voltage should be applied during compliance test and the duration of the test is 2 mins.

6.3.3.2. For signal lines and control lines ports:

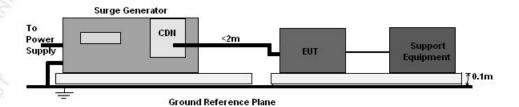
No I/O ports. It's unnecessary to test.

6.3.3.3. For DC output line ports:

No DC output ports. It's unnecessary to test.

Report No.: TH2211384-C02-R01 Page 20 of 32 EN 55032 Report

6.3.4 TEST RESULTS


Electrical Fast Transient/Burst				
Basic Standard:	IEC 61000-4-4:2012			
EUT:	iSmart Series Modular Data Center			
M/N:	IS100			
Test Mode:	Mode A.1			
Test Voltage:	AC 220V/50Hz			
Temperature:	24℃			
Humidity:	60%			
Atmosphere pressure:	101Kpa			

Line	Test Voltage	Performance criteria	Result
£ ^	±1kV	В	Pass
N	±1kV	В	Pass
PE	±1kV	В	Pass
L-N	±1kV	В	Pass
L-PE	±1kV	В	Pass
N - PE	±1kV	В	Pass
L - N - PE	±1kV	В	Pass

Report No.: TH2211384-C02-R01 Page 21 of 32 EN 55032 Report

6.4 SURGE IMMUNITY TEST

6.4.1 BLOCK DIAGRAM OF TEST SETUP

6.4.2 TEST SPECIFICATION

Basic Standard IEC 61000-4-5:2014+AMD1:2017

Test Port input a.c. power port

Wave-Shape Open Circuit Voltage - 1.2 / 50 us

Short Circuit Current - 8 / 20 us

Pulse Repetition Rate 1 pulse / min.

Test Events Five positive/negative polarity pulses at the0°,90°,180°,270°

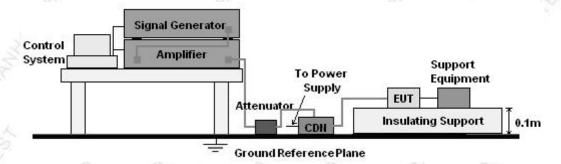
phase angel

6.4.3 TEST PROCEDURE

- 6.4.1.1. Set up the EUT and test generator as shown on Section 6.4.1.
- 6.4.1.2. For line to line coupling mode, provide a 1.0 KV or 2.0 KV 1.2/50us voltage surge (at open-circuit condition) and 8/20us current surge to EUT selected points.
- 6.4.1.3. At least 5 positive and 5 negative (polarity) tests with a maximum 1/min repetition rate are conducted during test
- 6.4.1.4. Different phase angles are done individually.
- 6.4.1.5. Record the EUT operating situation during compliance test and decide the EUT immunity criterion for above each test.

Report No.: TH2211384-C02-R01 Page 22 of 32 EN 55032 Report

6.4.4 TEST RESULTS


	SURGE IMMUNITY
Basic Standard:	IEC 61000-4-5:2014+AMD1:2017
EUT:	iSmart Series Modular Data Center
M/N:	IS100
Test Mode:	Mode A.1
Test Voltage:	AC 220V/50Hz
Temperature:	24 °C
Humidity:	60%
Atmosphere pressure:	101Kpa

Line	Phase Angle	Test Voltage	Number of Pulse	Performance criteria	Result
	90°	+ 1kV	5	В	Pass
L - N	270°	- 1kV	5	В	Pass
L DE	90°	+ 2kV	5	В	Pass
L - PE	270°	- 2kV	5	В	Pass
N DE	90°	+ 2kV	5	В	Pass
N - PE	270°	- 2kV	5	В	Pass
L - N - PE	90°	+ 2kV	5	В	Pass
	270°	- 2kV	5	В	Pass

Report No.: TH2211384-C02-R01 Page 23 of 32 EN 55032 Report

6.5 INJECTED CURRENTS SUSCEPTIBILITY TEST

6.5.1 BLOCK DIAGRAM OF TEST SETUP

6.5.2 TEST SPECIFICATION

Basic Standard : IEC 61000-4-6:2013 Test Port : input a.c. power port

Step Size : 1%

Modulation : 1kHz,80% AM

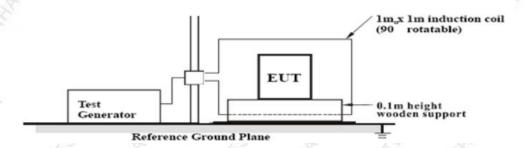
Dwell Time : 1 second

6.5.3 TEST PROCEDURE

- 6.5.3.1. Set up the EUT, CDN and test generators as shown on Section 6.5.1.
- 6.5.3.2. Let the EUT work in test mode and measure it.
- 6.5.3.3. The EUT are placed on an insulating support 0.1m high above a ground reference plane. CDN (coupling and decoupling device) is placed on the ground plane about 0.3m from EUT. Cables between CDN and EUT are as short as possible, and their height above the ground reference plane shall be between 30 and 50 mm (where possible).
- 6.5.3.4. The disturbance signal described below is injected to EUT through CDN.
- 6.5.3.5. The EUT operates within its operational mode(s) under intended climatic conditions after power on.
- 6.5.3.6. The frequency range is swept from 150kHz to 10MHz using 3V, 10MHz to 30MHz using 3V to 1V,30MHz to 80MHz using 1V signal level, and with the disturbance signal 80% amplitude modulated with a 1kHz sine wave.
- 6.5.3.7. The rate of sweep shall not exceed 1.5*10 -3 decades/s. Where the frequency is swept incrementally, the step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value.
- 6.5.3.8. Recording the EUT operating situation during compliance testing and decide the EUT immunity criterion.

Report No.: TH2211384-C02-R01 Page 24 of 32 EN 55032 Report

6.5.4 TEST RESULTS


	INJECTED CURRENTS SUSCEPTIBILITY	
Basic Standard:	IEC 61000-4-6:2013	
EUT:	iSmart Series Modular Data Center	
M/N:	IS100	
Test Mode:	Mode A.1	
Test Voltage:	AC 220V/50Hz	Ż.
Temperature:	24℃	0
Humidity:	60%	
Atmosphere pressure:	101Kpa	7

Frequency Range (MHz)	Injected Position	Strength (Non-modulated)	Performance criteria	Result
0.15 ~ 10	AC Mains	3V r.m.s.	A	Pass
10 ~ 30	AC Mains	3V r.m.s. to 1V r.m.s.	Α 🔅	Pass
30 ~ 80	AC Mains	1V r.m.s.	Α	Pass

Report No.: TH2211384-C02-R01 Page 25 of 32 EN 55032 Report

6.6 POWER FREQUENCY MAGNETIC FIELD TEST

6.6.1 BLOCK DIAGRAM OF TEST SETUP

6.6.2 TEST SPECIFICATION

Basic Standard : IEC 61000-4-8:2009

Test Port : Enclosure port
Test Frequency : 50Hz, 60Hz
Test Duration : 5 minutes

Direction : X -axis, Y -axis, Z -axis

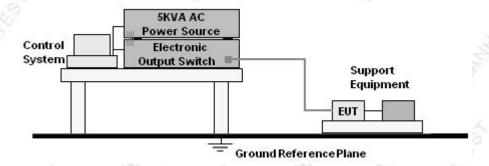
6.6.3 TEST PROCEDURE

a. The EUT is put on the table which is 0.8 meter high above the ground and shall be placed on the GRP with the interposition of a 0.1m-thick insulating support.

b. The power supply, input and output circuits shall be connected to the sources of power supply, control and signal.

c. The cables supplied or recommended by the equipment manufacturer shall be used. 1 meter of all cables used shall be exposed to the magnetic field.

6.6.4 TEST RESULTS


Power frequency magnetic field				
Basic Standard:	IEC 61000-4-8:2009			
EUT:	iSmart Series Modular Data Center			
M/N:	IS100			
Test Mode:	Mode A.1			
Test Voltage:	AC 220V/50Hz			
Temperature:	24.2 °C			
Humidity:	50%			
Atmosphere pressure:	101Kpa			

Direction	Field Strength (A/m)	Observation Time (min)	Test Frequency (Hz)	Performance criteria	Result
Χ	3 1	5	50	Α	Pass
Υ	1 3	5	50	Α	Pass
Z	1 🚫	5	50	Α	Pass

Report No.: TH2211384-C02-R01 Page 26 of 32 EN 55032 Report

6.7 VOLTAGE DIPS AND INTERRUPTIONS TEST

6.7.1 BLOCK DIAGRAM OF TEST SETUP

6.7.2 TEST SPECIFICATION

Basic Standard : IEC 61000-4-11:2020 Test Port : input a.c. power port

Phase Angle : 0°, 180°

6.7.3 TEST PROCEDURE

6.7.3.1. Set up the EUT and test generator as shown on Section 6.7.1.

6.7.3.2. The interruptions is introduced at selected phase angles with specified duration.

6.7.3.3. Record any degradation of performance.

6.7.4 TEST RESULTS

VOLTAGE DIPS AND INTERRUPTIONS						
Basic Standard:	IEC 61000-4-11:2020					
EUT:	iSmart Series Modular Data Center					
M/N:	IS100					
Test Mode:	Mode A.1					
Test Voltage:	AC 220V/50Hz					
Temperature:	24 ℃					
Humidity:	60%					
Atmosphere pressure:	101Kpa					

Test Level % UT	Voltage Dips & Short Interruptions % UT	Duration (in periods)	Performance criteria	Result
< 5	100	0.5	В 🔗	Pass
70	30	25	C	Pass
< 5	100	250	C	Pass

Report No.: TH2211384-C02-R01 Page 27 of 32 EN 55032 Report

APPENDIX A - EUT PHOTOGRAPHS

External Photos of EUT

Report No.: TH2211384-C02-R01 Page 28 of 32 EN 55032 Report

Report No.: TH2211384-C02-R01 Page 29 of 32 EN 55032 Report

Report No.: TH2211384-C02-R01 Page 30 of 32 EN 55032 Report

Report No.: TH2211384-C02-R01 Page 31 of 32 EN 55032 Report

*********END OF THE REPORT********

Report No.: TH2211384-C02-R01 Page 32 of 32 EN 55032 Report